Brønsted Acid-Catalyzed Direct Substitution of 2-Ethoxytetrahydrofuran with Trifluoroborate Salts

نویسندگان

  • Kayla M. Fisher
  • Yuri Bolshan
  • Aurelio G. Csákÿ
چکیده

Metal-free transformations of organotrifluoroborates are advantageous since they avoid the use of frequently expensive and sensitive transition metals. Lewis acid-catalyzed reactions involving potassium trifluoroborate salts have emerged as an alternative to metal-catalyzed protocols. However, the drawbacks to these methods are that they rely on the generation of unstable boron dihalide species, thereby resulting in low functional group tolerance. Recently, we discovered that in the presence of a Brønsted acid, trifluoroborate salts react rapidly with in situ generated oxocarbenium ions. Here, we report Brønsted acid-catalyzed direct substitution of 2-ethoxytetrahydrofuran using potassium trifluoroborate salts. The reaction occurs when tetrafluoroboric acid is used as a catalyst to afford functionalized furans in moderate to excellent yields. A variety of alkenyland alkynyltrifluoroborate salts readily participate in this transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of arylidinebarbituric acid derivatives catalyzed by dodecylbenzenesulfonic acid (DBSA) in aqueous media

A series of arylidine barbituric acid derivatives was synthesized by Knoevenagel condensation reaction of aromatic aldehydes with barbituric acid or thiobarbituric acid using dodecylbenzenesulfonic acid as a Brønsted acid-surfactant catalyst in aqueous media. Regardless of the nature of the substitution (electron-donating and -withdrawing), all the reactions were completed within 15-65 min in w...

متن کامل

Synthesis of arylidinebarbituric acid derivatives catalyzed by dodecylbenzenesulfonic acid (DBSA) in aqueous media

A series of arylidine barbituric acid derivatives was synthesized by Knoevenagel condensation reaction of aromatic aldehydes with barbituric acid or thiobarbituric acid using dodecylbenzenesulfonic acid as a Brønsted acid-surfactant catalyst in aqueous media. Regardless of the nature of the substitution (electron-donating and -withdrawing), all the reactions were completed within 15-65 min in w...

متن کامل

Brønsted acid-catalyzed Mannich reaction through dual activation of aldehydes and N-Boc-imines.

In the presence of a Brønsted acid catalyst, both aldehydes and N-Boc-aminals were converted to enecarbamates and N-Boc-iminium salts as activated nucleophiles and electrophiles, respectively, giving unprecedented Mannich adducts. The asymmetric variant of the present Mannich reaction has also been demonstrated with a chiral phosphoric acid catalyst.

متن کامل

Synthesis of 3,3-disubstituted oxindoles by one-pot integrated Brønsted base-catalyzed trichloroacetimidation of 3-hydroxyoxindoles and Brønsted acid-catalyzed nucleophilic substitution reaction.

Treatment of 3-hydroxyoxindoles with trichloroacetonitrile (1.3 equiv.) and a catalytic amount of DBU (0.1 equiv.) followed by addition of nucleophiles (1.5 equiv.) and diphenylphosphoric acid (0.2 equiv.) afforded the 3,3-disubstituted oxindoles in good to excellent yields. DFT computations supported the notion that the reaction went through the 1-alkyl-2-oxo-2H-indol-1-ium intermediate.

متن کامل

Organocatalytic vinyl and Friedel-Crafts alkylations with trifluoroborate salts.

Over the last 8 years, our laboratory has developed the concept of iminium catalysis, a mode of LUMO-lowering activation that has enabled the invention of a large number of enantioselective organocatalytic transformations including Diels-Alder cycloadditions, Friedel-Crafts alkylations, Mukaiyama-Michael additions, hydrogenations, and heteroconjugate additions.1 Central to the utility of this t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016